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ABSTRACT 

This thesis presents the design and construction of a test-bed suitable for 

test and evaluation (T&E) of the Attitude Determination and Control System 

(ADCS) for a nanosatellite.  This work briefly reviews the Navy’s use of satellites 

and considers the role of nanosatellites within that context.  A survey of three-

axis simulators precedes the development of an adaptive mass-balancing 

algorithm capable of effectively eliminating gravitational torques on a three-axis 

simulator without momentum exchange devices.  This is followed by the design 

and construction of a test-bed for validation of the mass-balancing algorithm.  

Although primarily designed for integration within the NPS TINYSCOPE 

project, this test-bed’s application reaches beyond TINYSCOPE to any payload 

onboard a nanosat requiring attitude control.  The test-bed, based on the 

Cubesat standard, is modular and allows any ADCS, containable within a 1U (10 

cm cube) space, to go through T&E prior to launch including, but not limited to, 

stability, pointing accuracy, and nadir tracking.  
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I. INTRODUCTION  

A. MOTIVATION: SURVEY OF THE NAVY’S USE OF SATELLITES 

This thesis intends to support the Naval Postgraduate School (NPS) 

Cubesat program and potential advances in USW intelligence gathering 

capabilities by contributing to the design and construction of a Cubesat Three-

Axis Simulator for NPS termed CubeTAS.  This thesis also documents the design 

and development of CubeTAS.   

The capabilities of a constellation of cubesats can provide real time space-

based observation of ports with tactically relevant revisit times [1]. The first 

section of the introduction aims to present a few areas in which Cubesats may 

serve the Navy more aptly and more cheaply than current space systems. 

This test-bed is intended for immediate implementation in support of the 

Naval Postgraduate School’s TINYSCOPE nanosat program with additional 

testing of passive magnetic control within the NPS Small Satellite Research 

Lab’s Helmholtz coil.  The simulator will then be available for other Nanosats 

within the academic community to provide a practical and affordable test bed for 

continued education in space, space systems, and relevant military applications. 

The primary purpose of this test bed is to allow for nanosat attitude 

determination and control system (ADCS) development, sensor integration for 

pre-flight tests, and precision pointing algorithm validation.  The secondary 

purpose of this work is verification of hardware in the loop, which would allow for 

performance verification of momentum exchange devices (MEDs) in the form of 

passive magnetic control, reaction wheels, or active control moment gyroscopes 

(CMGs). 

In order to provide a torque-free simulator, a test bed must be designed 

and constructed in such a way that the center of gravity (CG) and center of 

rotation (COR) are co-located.  Although course and fine resolution techniques 
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can be used to approach this end manually, fine resolution is only attained 

through the real time implementation of adaptive mass-balancing onboard the 

simulator.   

1. Communications 

The Navy began developing satellite communication with the installation of 

mobile terminals on USS Midway (CVA-41) and USS Canberra (CAG-2) in 1965 

[2].  Satellite relay from shore stations has been a very effective means of 

conveying orders and critical information to ships, submarines, and aircraft at 

sea.  The year 1958 saw the dawn of satellite communications in the form of 

Communications by Moon Relay (CMR), followed by the first man-made passive 

reflector called Echo, which was launched by NASA in August 1960 [3, pp. 38–

40].  The Telstar program, an effort mainly of AT&T, followed Echo and 

demonstrated that “active communication satellites could provide high-quality 

stable circuits for television and multi-channel telephony” [4, pp. 3–5].  Since 

1976, the Navy has relied on ultra-high frequency (UHF) Satellite 

Communications (SATCOM) [5]. 

Satellites currently disseminate information to Attack Submarines (SSN) 

and Ballistic Missile Submarines (SSBN) via the Satellite Submarine Information 

Exchange Subsystem (SSIXS).  This system transmits data to its subscribers, 

who can receive group broadcasts or request message traffic waiting in a queue.  

Fleet Satellite Communications (FLTSATCOM) satellites were the first to provide 

this capability with coverage between 70 degrees North and 70 degrees South 

latitude [6].  FLTSATCOM satellites where replaced by UHF Follow On (UFO) 

satellites in the 1990s.  The UFO satellites are being updated and scheduled for 

replacement by the Mobile User Objective System (MUOS) beginning in 2010 

with MUOS attaining full capability in 2014 [7, 8].  All of these systems provide for 

select information to be transmitted to submarines underway with near global 

coverage. 
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2. Intelligence 

Satellites have been used since August 1960 to make photo 

reconnaissance observations from space starting with the launch of the Corona 

spacecraft [9].  Nations have used satellites to observe foreign ports, to track 

submarine in-port time and deployment schedules.  These observations give our 

forces a more accurate depiction of enemy positions and capabilities and allows 

the Unites States to appropriately allot funding to critical force structure to 

maintain sufficient strategic, operational, and tactical advantage over our 

adversaries. 

3. Positioning 

The Global Postioning System (GPS) has had an invaluable influence on 

navigation, and revolutionized positioning data for accurate weapon systems 

launch parameters.  For submarines in particular, celestially based 

measurements of the Earth’s gravity field are used to create vertical deflection 

maps, which, in turn, provide compensation for gyroscopic errors [10]. 

4. Maritime Domain Awareness 

Maritime Domain Awareness (MDA) is the Navy’s way of collecting 

tracking data on vessels at sea the same way the Federal Aviation Administration 

(FAA) keeps track of aircraft.  The Navy uses a system called the Automatic 

Information System (AIS) to collect and organize the data.  The U.S. Coast 

Guard (USCG) became very interested in the program shortly after the attacks 

on New York in 2001 [11]. 

The Automatic Information System is a network of transponders that the 

International Maritime Organization’s (IMO) International Convention for the 

Safety of Life at Sea (SOLAS) requires onboard ships with a gross tonnage (GT) 

of 300 or more tons and all passenger ships [12].  The Code of Federal 

Regulations Title 70 Part 80.5 provides the official definition of AIS as:  
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A maritime navigation safety communications system standardized 
by the International Telecommunication Union (ITU) and adopted 
by the International Maritime Organization (IMO) that provides 
vessel information, including the vessel’s identity, type, position, 
course, speed, navigational status and other safety-related 
information automatically to appropriately equipped shore stations, 
other ships, and aircraft; receives automatically such information 
from similarly fitted ships; monitors and tracks ships; and 
exchanges data with shore-based facilities. [13] 

These transponders mainly operate within the VHF band and are 

restricted to Line-of-Sight (LOS) transmission.  Although there are 26 different 

message types, the representative data shown in Table 1 is transmitted via AIS 

[12,14]. 

Every 2 to 10 seconds while 

underway and every 3 minutes at 

anchor 

Every 6 minutes 

Maritime Mobile Service Identity 

(MMSI) 

IMO Ship Identification Number  

Navigation Status Radio Call Sign 

Rate of Turn Vessel Name 

Speed Over Ground Type of Ship and Cargo 

Position Accuracy Ship Dimensions 

Course Over Ground GPS Antenna Location 

True Heading Type of Positioning Data  

Time Stamp Ship Draught 

 Destination 

 Estimated Time of Arrival (ETA) 

Table 1.   AIS Data [From 14] 

ORBCOMM is currently the provider of AIS data to the USCG and U.S. 

Navy (USN).  ORBCOMM is a civilian organization aimed at Machine-to-Machine 

(M2M) two-way data communication between fixed or mobile assets such as 
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commercial transportation, heavy equipment, industrial fixed assets, and 

marine/homeland security assets [15]. 

ORBCOMM’s current satellites, depicted in Figure 1, exist in Low-Earth 

Orbit (LEO) and utilize a wheel-augmented gravity gradient/magnetic 3-axis 

Attitude Control System (ACS).  They do not require a propulsion system for 

station keeping, but the base subsystem advertises “cold gas propellant / 

differential drag station keeping” [16]. 

 

 

Figure 1.   ORBCOMM LEO Satellite [From 16] 

ORBCOMM currently has AIS data collection systems onboard five of their 

satellites with plans to launch 18 more with increased processing power of the 

same data by the start of 2011 [11].  ORBCOMM is also considering a polar 

orbiter allowing AIS data to be collected throughout the globe, and routed to 

select terrestrial ground stations via onboard “store and forward”.  AIS data, on 

vessels up to 72 degrees latitude, is currently available to subscribers via the 

World Wide Web and other data networks [11]. 

Cubesats at NPS are being developed for their utility in photo 

reconnaissance.  Constellations of cubesats could soon be utilized as 

communications relays for time critical orders, sensors gathering earth science 

data for civil or military applications, or as a Department of Defense (DoD) 

supplement to the current AIS framework. 
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B. LITERATURE REVIEW 

1. Introduction 

Commercial satellites tend to have a wet mass, which includes fuel, in the 

range of 1000–4000 kg (2200–8800 lbm).  In order to make satellites faster, 

better, smaller, and cheaper, research has been conducted over the past 20–30 

years to develop smaller satellites.  Smallsats (< 500 kg) tend toward the use of 

Commercial-Off-The-Shelf (COTS) equipment as opposed to organic 

components, and they have shorter kick-off to launch times with subsequently 

lower overall costs.  Within the realm of Smallsats, the generally accepted 

classification scheme, based on wet mass, is shown in Table 2. 

Group Name Wet Mass 

Large Satellite > 1000 kg (> 2200 lbm) 

Medium Sized Satellite 500–1000 kg (1100–2200 lbm) 

Mini Satellite (Minisat) 100–500 kg (220–1100 lbm) 

Micro Satellite (Microsat) 10–100 kg (22–220 lbm) 

Nano Satellite (Nanosat) 1–10 kg (2.2–22 lbm) 

Pico Satellite (Picosat) 0.1–1 kg (0.22–2.2 lbm) 

Femto Satellite (Femtosat) <100 g (<0.22 lbm) 

Small Satellites 

(Smallsats) 

Table 2.   Small Satellite Categorization Scheme (From [17, 18]) 

Smallsats are of particular interest to the DoD due to their lower cost and 

the short conception to launch time requirements allowing the military to deliver a 

fast turn-around on short-term missions.  According to the NASA Goddard Space 

Flight Center (GSFC), in the next one to eight years, smallsats will become more 

common as components are miniaturized as a by-product of advances in industry 

[17].  There will always be a place for a wide range of satellites across the 

spectrum of possible masses, but smallsats are very quickly finding their niche. 
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Cubesats, with a mass of 1 kg, are technically picosatellites that have 

been designed or built to the Cubesat standard, Figure 2, as designed by 

Stanford and the California Polytechnic State University (Cal Poly) [19].  These 

smallsats have a nominal construction cost of $30,000–$40,000 and a launch 

cost of $40,000 [20].  Cubesat kits can be purchases from Pumpkin, Inc., starting 

with a Cubesat skeleton for $7,500 [21].  Cubesats can be built and launched 

within a year [22].  A list of groups working on Cubesats is included as Appendix 

A. 

 

Figure 2.   CubeSat Specifications (From [19]) 

Based originally on a Beanie Baby box, the standard unit of a Cubesat, 

such as CP-1 shown in Figure 3, is a 10 cm cube, termed 1 Unit or 1U.  

Cubesats can range from 1U up to any combination that can be designed and 

launched, e.g., 2U (10x20 cm) or 3U (10x30 cm). 
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Figure 3.   Conception to Reality: Beanie Baby Box (left); Cubesat (right) 

Cal Poly has designed a tube-type spring loaded Cubesat launcher, 

shown in Figure 4, called the Poly Picosatellite Orbital Deployer, or P-POD, 

capable of launching any combination of 1U, 2U and 3U Cubesats taking no 

more than a 3U volume.  Other groups, e.g., ISIS, UTIAS/SFL, also provide 

launch capability. 

 

Figure 4.   Poly Picosatellite Orbital Deployer(P-POD) (From [19]) 

Cal Poly’s Professor Jordi Puig-Suari took the initiative to start an annual 

Cubesat Developers’ Workshop in April 2004, which now serves as an 

“international collaboration of over 40 universities, high schools, and private firms 

developing picosatellites containing scientific, private, and government payloads” 

[18]. 

Smallsats have the ability to change the way the DoD thinks about 

accomplishing missions in space.  With a constellation of 80 nanosatellites, 

revisit time can be reduced down to less than 30 minutes. [1, p.10].  A geo-



 9

stationary orbit overhead a target of interest would be optimal giving maximum 

overhead time, but these orbits can only reside along the Earth’s equator.  And 

these orbits, which are positioned around 35,800 km above the earth, do not lend 

themselves to high-resolution imagery.  The best altitude for quality images is the 

Low Earth Orbit (LEO), which is nominally defined as less than 2000 km.  A LEO 

Sun-synchronous polar orbit, or polar orbit, allows the Earth to rotate underneath 

the satellite’s orbit which can allow for full earth coverage provided specific 

combinations of altitude and sensor swath width are met.  Orbits can be adjusted 

to get twice daily coverage of any location on the globe from any one satellite 

[23]. 

2. TINYSCOPE 

Tactical Imaging Nano-sat Yielding Small-Cost Operations and Persistent 

Earth-coverage (TINYSCOPE), shown in Figure 5, is a cubesat design at NPS 

being designed to provide real time intelligence to operational and tactical level 

forces in theatres like Iraq and Afghanistan [1].  A student at NPS conducted an 

analytical feasibility study to develop estimates of potential performance and 

tactical usefulness of the TINYSCOPE concept.  A constellation of nanosats, like 

TINYSCOPE, would be capable of the tactically relevant revisit times as 

mentioned above [1]. 
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Figure 5.   Tactical Imaging Nano-sat Yielding Small-Cost Operations and 
Persistent Earth-coverage (TINYSCOPE) (From [1]) 

3. State of the Art: A Survey of 3-Axis Simulators 

The Attitude Determination and Control System (ADCS) is the subsystem 

in charge of estimating and controlling the orientation of the satellite.  There are a 

variety of methods available for use as ADCS systems.  In terms of sensing, 

sensors have been developed that measure satellite attitude with respect to the 

stars, termed Star Trackers.  A similar sensor, which looks at only one star, our 

sun, is termed a Solar Tracker.  The list goes on to include horizon sensors, 

orbital gyrocompasses, and magnetometers [24].  The attitude determination is 

usually performed fusing the sensors’ measurements via a digital extended 

Kalman Filter [25]. 

There are two main categories of attitude control: passive and active.  

Passive control can consist of gravity gradient stabilization, which uses satellite 

asymmetry to align the long axis of the satellite with the center of the Earth, or 
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the more complex magnetic torquers, which use permanent magnets, or coils, 

and a precise map of the Earth’s magnetic field to control rotation [26].  

Active control, the traditional form of attitude control, can take the form of 

thrusters expending propellant, spin stabilization, solar sails, or Momentum 

Exchange Devices (MED), e.g., Reaction Wheels (RW) or Control Moment 

Gyroscopes (CMG) [26]. 

In order to test ADCS algorithms on the ground, prior to launch, simulation 

of dynamics within a test-bed allows researchers to adequately model the system 

as it would exist in the space environment and run tests on the space vehicle’s 

attitude determination and control system. 

Three-axis simulators are common within the Aerospace industry and 

education system.  Three-axis simulators for cubesats are less common and, in 

fact, this thesis aims to be the first.  One of the first attitude simulators, shown in 

Figure 6, was built at the NASA Ames Research Center in 1959 [28, p. 3]. 

 

Figure 6.   Air-Bearing Supported Platform Constructed at NASA Ames 
Research Center in 1959 (From [28]) 
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Schwartz, Peck and Hall wrote a historical review of air-bearing spacecraft 

simulators in 2003.  They looked at planar systems, rotational air-bearings and 

facilities that had the capability to provide translational and three-dimensional 

rotational freedom [28].  In terms of rotational systems, as the one being 

developed here, there are three basic types of spherical air bearing platforms: 

tabletop (Figure 7a), umbrella (Figure 7b) and dumbbell (Figure 7c). 

a. b. c.  

Figure 7.   Three Standard Types of Spherical Air Bearing Systems 

The tabletop design has the system components mounted on top of the 

“table.” The umbrella is designed to keep the center of mass of the system very 

near to the center of rotation by suspending components very carefully below the 

“umbrella.” The dumbbell design reduces structural interference by placing the 

payload of the simulator further from the center of rotation [28, p. 515].  A set of 

three or four gimbals, four to avoid gimbal lock, can be used instead of a 

spherical air bearing, but it has been determined that gimbal dynamics will 

interfere with the dynamics of the payload as a non-linear function of the gimbal 

angle creating increased complexity [28, p. 513]. 

a. Stanford 

The first unclassified/non-proprietary spherical air-bearing simulator 

was built at Stanford around 1975 [28, p. 516].  In 1996, Professor Robert Twiggs 

advised Jaewoo Jung, Naoki Kuzuya and Jaime Alvarez on the design of the 

Orbiting Picosatellite Automated Launcher (OPAL) attitude control system using 

two pairs of magnetic coils and a 3-axis magnetometer. Ground simulations of 

the ADCS for OPAL (Figure 8) were run, using a computer model [29]. 
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Figure 8.   Orbiting Picosatellite Automated Launcher (OPAL) (From [30]) 

b. California State Polytechnic Institute (Cal Poly) 

The Cal Poly Spacecraft Attitude Dynamic Simulator (CP/SADS), 

as of August 2007, was set up with four reaction wheel momentum exchange 

devices in a pyramid configuration mounted on a spherical air bearing [31, p. 1].  

Figure 9 shows the August 2007 design configuration, which was designed to 

weigh less than 10 kg [31, p. 5].  The CP/SADS is capable of 360  of rotation 

about the z-axis and 30  about the x-axis and y-axis, with 0.1 rad
s and 0.1 

rad
s2  angular velocity and acceleration, respectively [31, p. 4].  Test results 

showed that CP/SADS has a pointing accuracy of around 2  3  [31, p. 22].   
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Figure 9.   The Cal Poly Spacecraft Dynamic Simulator (2007) 

In 2007, Cal Poly’s team was moving toward a mass estimation 

scheme published by Tanygin and Williams [31].  Healy ran a computer 

simulation of the system identification and automatic mass balancing of 

CP/SADS using a least squares technique [31].  Mehiel and Silva are in the 

progress of publishing a thesis documenting the implementation of Healy’s 

theoretical work [32].  CP/SADS was sponsored by the Department of the Navy, 

Office of Naval Research, under Award # N00014-05-1-0855 [31, p. 23]. 

c. Virginia Polytechnic Institute and State University 

The Space Systems Simulation Laboratory (SSSL) at Virginia Tech 

currently has a Distributed Spacecraft Attitude Control System Simulator 

(DSACSS), Figure 10.  DSACSS is “two independent spherical air-bearing 

platforms for formation flying attitude control simulation” [33].  Virginia Tech is 

working on energy storage techniques and control options that include coupled 

attitude control and nonlinear compensation of an under-actuated system [33].  

DSACSS is also being used for magnetic bearing research and work on attitude 

control via combinations of control moment gyros, momentum wheels, and 

thrusters.  See Table 3 for a summary of Virginia Tech’s DSACSS capabilities. 
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Figure 10.   Virginia Tech Distributed Spacecraft Attitude Control System 
Simulator (DSACSS) (Whorl I, left; Whorl II, right) [From 27] 

Virginia Tech’s work is supported by: the Air Force Research Lab 

(AFRL), Air Force Office of Scientific Research, Honeywell Aerospace, the 

National Aeronautics and Space Administration, and the National Science 

Foundation [33]. 

d. Utah State University (USU) 

According to [34], Utah State developed a test bed named the 

Small Satellite Attitude Control Simulator (SSACS) in the 1990s with an adaptive 

mass balancing system as detailed in theses by Young and Olson.  

USU is planning on revealing a very capable laboratory for 

cubesats in the near future.  Although, this author is not at liberty to divulge the 

details of USU’s Space Dynamics Laboratory (SDL), this lab will provide great 

opportunities for cubesat research [35] 

e. Georgia Institute of Technology (GIT) 

As of 2003, Georgia Tech had developed an Integrated Attitude 

Control System (IACS) with a 136 kg (300 lbf) load capacity, four CMGs, and 
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pneumatic thrusters in addition to the attitude and rate sensors [36].  The IACS is 

shown in Figure 11, and other comparison data is shown in Table 3. 

 

Figure 11.   GIT Integrated Attitude Control System (IACS) (From [36]) 

f. Naval Postgraduate School 

The Naval Postgraduate School has developed state-of-the-art 

satellite simulators.  Two representative test beds have been chosen for 

presentation here: the Three-Axis Spacecraft Simulator (TASS) (Figure 12) and 

the Three-Axis Simulator 2 (TAS2) (Figure 13) [37, 38].  Generic capability 

numbers are included in Table 3, and further information can be found in [37, 38].  
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CubeTAS aims to be the fourth spacecraft simulator at NPS with the following 

capabilities/sensors: 

 2 single-axis inclinometers 

 Inertial Measurement Unit 

 Sun Sensor with externally simulated light source 

 One single-axis reaction wheel for active attitude control 

 Helmholtz Coil for magnetic field simulation 

 Torque Coils for passive attitude control 

 Modular 1U volume for further research 

 

Figure 12.   NPS Three-Axis Satellite Simulator (TASS) (From [37]) 
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Figure 13.   NPS Three-Axis Simulator 2 (TAS2) (From [38]) 

Table 3 provides a broad overview of a wide range of spacecraft 

simulators from the university level to world-class work being done by the 

National Aeronautics and Space Administration.
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Facility DoF Yaw Pitch Roll Weight CMG RW Thrusters 
Pointing 
Accuracy 

Auto Mass 
Balancing 

Cal Poly1 3 360    30    30   
10 kg  
(22 lb) 

No Yes No 2-3   In works 

VT2 3 360   
a:  5   

b:  30   

a:  5   

b:  30   

136 kg 
(300lb) 

Yes Yes Yes TBD Yes 

USU3 Very Capable System In Works 

NPS TASS4 3 360    30    30   
200 kg 
(441 lb) 

No Yes No 0.1   Yes 

NPS 
TAS25 

3 360    20    20   
800 kg 
(1763 
lb) 

Yes No No <0.1   Yes 

MSFC6 6 360   360   360   
181kg  
(400 lb) 

     

LLNL7 4 360    15    30   
32 kg 
(70 lb) 

     

GIT8 3 360    30    30   
136 kg 
(300 lbf) 

Yes Yes Yes <1   Yes 

NPS 
CubeTAS9 

3 360    TBD    TBD  
8 kg  
(18 lb) 

No Yes No TBD In works 

Table 3.   Survey of Spacecraft Simulators; 1 California State Polytechnic University [25]; 2 Virginia Polytechnic Institute 
and State University [33]; 3 Utah State University [35]; 4 Naval Postgraduate School Three-Axis Spacecraft 
Simulator [37]; 5 Naval Postgraduate School Three-Axis Simulator Two [38]; 6 NASA Marshall Space Flight 
Center [39]; 7 Lawrence Livermore National Laboratory [33]; 8 Georgia Institute of Technology [36]; Naval 

Postgraduate School Cubesat Three-Axis Simulator
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C. THESIS OBJECTIVES 

After the survey of this chapter, it was determined that the CubeTAS will 

be the first three-axis simulator specifically designed to accommodate the 

cubesat form factor and constitutes a new, spherical, air-bearing design unlike 

those shown in Figure 7.  This design type has been termed, by the author, a 

“bowl” type spherical air-bearing test-bed.  This thesis introduces a new mass 

balancing technique not involving momentum exchange devices for angular 

momentum inputs.  Only the balance masses themselves will be manipulated in 

order to collocate the system’s center of gravity and center of rotation.  This 

mass-balancing algorithm is to be validated by the design and construction of a 

three-axis simulator. 

Chapter II will follow the analytical derivation of the CubeTAS adaptive 

mass-balancing algorithm.  Chapter III includes a discussion of the CubeTAS 

design to include drawings and component specifications.  Chapter IV contains 

the summary and conclusion, and Chapter V covers future experimental 

validation and recommendations for further work. 

D. CONTRIBUTIONS 

In term of the goals of this thesis, the CubeTAS project sought to make 

the following contributions: 

 Design of Three-Axis Simulator with the aid of CAD programs and a 
3D printing machine 

 Test-bed for Nanosatellite attitude dynamics testing 

 A new mass-balancing technique 

 Construction of the test-bed for simulation validation 
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II. ANALYTICAL DEVELOPMENT 

A. AUTOMATIC MASS BALANCING 

A standard configuration for an automatic mass-balancing system is 

comprised of three independently controlled masses designed to move parallel to 

each of the three principle axes of the system.  The following derivations are 

based on those demonstrated in [34].  Figure 14 shows the generic layout, where 

 i
 denotes the zero location of each balance mass and d

i
 denotes deviation 

from the zero location.  The unit vector along which each mass,  mi
, travels is 

represented as  ui
.   

 

Figure 14.   Automatic Mass Balancing System 

If the center of gravity (CG) is located at the tip of the position vector, r , 

the balance mass positions are manipulated to reduce r  as closely as possible 

to zero, where O denotes both the origin of the spacecraft inertial body frame and 

the center of rotation (COR) of the simulator.  The length of r  is often reduced by 

manual manipulation of masses external to the system shown in Figure 14.  This 

brings r  into a range of controllability based on m1 , m2 , m3  and the range of 

travel of the balance masses. 
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The location of each balance mass can be denoted 

 Ri  i  diui      (i  1...3)  (1) 

Following [34] the CG vector is then calculated as 

 r 
1

m
R

B
  dm 

1

m
(m  mB )RO  miRi

i1

3









  (2) 

where mB  m1  m2  m3 is the sum of the balance masses, RO  is the CG vector 

without balance masses and m  is the total mass of the entire system.   

B. PREVIOUS WORK AT NPS 

1. System 

The 3-axis spacecraft simulators at NPS use an umbrella type spherical 

air bearing.  They are nominally of significant mass and the increased volume 

available has provided researchers greater flexibility allowing the use of 

momentum exchange devices on each axis for integration in the mass-balancing 

algorithm.  This allows the simulators to be continually perturbed preventing the 

case where the CG may be improperly placed below the COR.   

2. Math 

The change in balance mass displacement, d , can be written in general 

terms as  

 d  
m

m1

r1
m

m2

r2

m

m3

r3













T

 (3) 

where r̂  is the estimate of the CG vector including the balance masses.  It can 

also be shown that the estimated inertia matrix, Ĵ , can be broken up into two 

terms, the estimate without balance masses, Ĵs , and the inertia of the balance 

masses alone.  This estimate can be written as 

 Ĵ  Ĵs  (mi[Ri][Ri])
i1

3

  (4) 
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where [Ri]  represents the cross product matrix of the ith balance mass with the 

cross product matrix defined as 

 [a] 

0 a3 a2

a3 0 a1

a2 a1 0
















,     a 

a1

a2

a3
















 (5) 

The new inertia matrix estimate after CG offset compensation is found by 

subtracting the initial contribution of the balance masses to the inertia matrix and 

replacing it with the updated estimate, where the new estimate becomes 

 ˆJ  Ĵ  (mi[Ri][Ri])
i1

3

  (mi[ Ri][ Ri])
i1

3

  (6) 

The first step in Kim and Agrawal’s method is batch estimation of the 

inertia matrix and the center of gravity.  The control method used involves 

adaptation and continuous excitation with a “preplanned spacecraft momentum 

trajectory” [34].  The error value between the actual and this desired angular 

momentum is decreased toward zero.  At this point gravitational disturbances are 

eliminated.  Kim and Agrawal use momentum exchange devices to follow the 

desired angular momentum trajectory. 

C. A NEW MASS BALANCING SYSTEM 

1. System 

With the aim of developing a method for gravitational torque cancellation 

without momentum exchange devices, the CubeTAS was constructed without 

momentum exchange devices.  These components can be added, if desired, into 

the modular 1U space in the center of the simulator but are not critical to the 

performance of the mass-balancing algorithm. 

2. Math 

The following analysis is a preliminary analytical development meant to 

prelude the introduction of the mass-balancing algorithm to the CubeTAS.  Most 

of this development follows very closely the work of Kim and Agrawal, [34], with 
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minor variations made to remove MED requirements from the system.  Instead of 

MEDs, the masses themselves are used to generate the torques required to 

balance the system, i.e., reduce the norm of the CG offset vector toward zero.   

The author’s approach incorporates the adaptation law from [34] but sums 

this term with another based on the removal of MEDs from the system.  In this 

manner the term r , which represents the change of the CG due to automatic 

mass balancing actuation, is broken into two parts, which can be written 

 r  r1 r2  (7) 

where r1  represents the same changes in CG referred to in [34], and r2  

represents those changes in CG required without the use of MEDs.  What follows 

is a brief explanation of the control method developed for CubeTAS. 

As mentioned above, the simulator must be excited by an angular 

momentum input around each axis to avoid the case in which the CG settles 

along the gravity vector.  A desired trajectory, Hd , is generated based on the 

Lyapunov function 

 V (H,r1) 
1

2
(H  Hd )T (H  Hd ) 

1

2
(r0 r1)T 1(r0  r1)  (8) 

where H  is the current angular momentum of the simulator, Hd  is the desired 

angular momentum trajectory, r0  is the CG location at time zero, r1  is the 

change of the CG due to automatic mass-balancing actuation, and   is a 

symmetric positive definite matrix. 

It can be shown, that the rate of change of the CG vector can be 

represented as 

 &r1  m[g]T (H  Hd )  (9) 

where [g]T  is the transpose of the cross-product matrix representation of the 

gravity vector.  In order to eliminate the possibility of singularities in the solutions 

to the kinematic equations, the author chose a quaternion representation of the 

simulator orientation. 
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The spacecraft equation of motion can be written as 

 H  []H  m[g](r0  r2 )  (10) 

where   is the system’s angular velocity.  Using the same combined feedback 

and feedforward momentum tracking control law proposed in [34], 

   K (H  Hd )  []H  &Hd  (11) 

where   represents a torque, and K  represents a gain matrix, it is possible to 

set Equation (11) equal to the right-hand-side of Equation (10) in the following 

manner.  

 m[g](r0  r2 )  K(H  Hd )  []H  &Hd  (12) 

Allowing r0  to be equal to 0 0 0 
T

, and solving for r2  it is determined that  

 

r2 

1

m
[g] K(H  Hd )  []H  &Hd  (13) 

where [g]  denotes the pseudoinverse of the cross product representation of 

the gravity vector.  The pseudoinverse of a generic matrix A  satisfies 

 

AAA  A

AAA  A

(AA )*  AA

(AA)*  AA

 (14) 

where A*  represents the conjugate transpose of the matrix A  [40].  The 

pseudoinverse generated in SIMULINK is calculated via singular value 

decomposition. 

Note the similarity between the above solution and the the generic 

equation Ax  b .  In this case 

 



A  m[g]

x  r2

b  K (H  Hd )  []H  &Hd

 (15) 

There is not a unique solution, since Rank([g])  2 , i.e., rank deficient, and the 

dim(r2 )  3 .   
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With just the balance masses, it is not possible to create torques about the 

gravity vector.  For example, if the simulator were oriented with pitch, roll and 

yaw values all being zero, this method would not be able to generate a torque 

around the yaw, or vertical, axis.   

The integrated value for r1  from Equation (9) was summed with r2  from 

Equation (13) to find 

 r  r1 r2  (16) 

This final CG compensation vector, r , accounts for the Lyapunov function 

trajectory which the simulator must follow and the manner in which the control 

law must be implemented, that is by angular momentum inputs made by 

deviation in balance mass positions only. 

3. Simulation 

An initial simulation was run in order to establish the limits of controllability 

of the balancing system.  Masses were assigned to four objects: the three 

balance masses and the entire system without the balance masses.  Values 

were calculated for Ri , r , and d  from Equations (1-3).  Iterations of initial CG 

offset showed that the offset, along each axis, needed to be less than a value on 

the order of 0.3 mm in order for the automatic system to be capable of collocating 

the CG with the COR.   

In order to validate the automatic mass balancing technique suggested 

here, a computer simulation was developed.  All sensor inputs were simulated in 

SIMULINK.  Initial estimates for mass and inertia values for this thesis were 

computed using an NX6 CAD model.  Iterative corrections for COM 

compensation were made within the SIMULINK modeling environment.   

The commanded perturbation signals chosen used to generate the 

desired angular trajectory were three identical inputs into each channel and can 

be written as 
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  15ekt sin(
1

10
t)

  15ekt sin(
1

10
t)

  15e kt sin(
1

10
t)

 (17) 

where ,  ,  and  represent roll, pitch and yaw angles, respectively.  Other 

values used in the simulation are included in Table 4. 

 

Sample Time, ts  0.01 sec 

Duration, t f  3000 sec 

Time Start, t0  5 sec 

Total Mass, m  7.798 kg 
Individual Balance Masses, 
m1,  m2 ,  m3  0.2 kg 

Initial CG Offset, r0  -0.235, 0.861, 0.467 T 103  m  

Simulator Moment of Inertia, J  

70864.935 0 0
0 76892.989 0
0 0 39773.049

















 106  kg m2

Maximum Balance Mass 
Deviation, di  10 mm 

Maximum Rate of Balance Mass 
Movement 

4 mm/s 

Initial Angular Velocity, 0  0 0 0 
T

 

Gain Matrix for Excitation, K  

10 0 0
0 10 0
0 0 10

















 

Initial Attitude   0,   0,   0  

Unit Vectors, ui  

u1  1 0 0 

u2  0 1 0 

u3  0 0 1 

 

Table 4.   Values Used in Simulation 
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The system is initially left unperturbed for an initial period, on the order of 

5 seconds, as the system may rest on the test-bed once released by an operator 

moving to the control terminal to initiate the mass-balancing program.  The 

control inputs, the commanded balance mass positions, are calculated and sent 

to the “simulator” for a period on the order of 50 minutes.  The following figures 

demonstrate the ability of the control system to bring the simulator under control, 

and leave it in a stable condition.  In order to validate these results, a test-bed is 

being constructed in the NACL.   

The H  Hd  term, introduced in Equation (8) is plotted over time in Figure 

15.  This plot shows short-lived transients with settling times on the order of 20 

seconds.  The CG offset vector, r , from Equation (2) is shown plotted over the 

first 25 seconds in Figure 16.  No inputs are made to the system over the first 5 

seconds.  Some transients with settling times similar to those shown in Figure 15 

are also noted here.  Angular momentum of the simulator, H , from Equation 

(10), is shown in Figure 17.  Note the steady maximums in this parameter after 

the first 20 seconds.  The CG offset vector is shown in Figure 18 to settle quite 

well as the simulation progresses.  Figure 19 shows that over the final 500 

seconds of the simulation, the offset has consistent maximums of less than 

3106  m .  The magnitudes of the oscillations shown in Figure 19 relate directly 

to maximum values of CG offset once the automatic mass balancing system is 

deactivated.  As discussed further in Chapter 3, the required residual torques 

must be less than values on the order of 2 104 N m .  As demonstrated in 

Figure 20, these results show, at least in simulation, that achieving this goal may 

be possible. 
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Figure 15.   Angular Momentum Error Transients 

 

Figure 16.   Center of Gravity Offset Transient 
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Figure 17.   Angular Momentum 

 

Figure 18.   CG Offset 
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Figure 19.   Center of Gravity Offset 

 

Figure 20.   Residual Torques 
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III. ADCS TEST-BED DESIGN 

A. INTRODUCTION 

The CubeTAS consists of a hemisphere over a spherical air-bearing with 

two parallel discs connected by four aluminum threaded rods.  The lower disc 

was designed with a 10 cm cube in its center providing a modular space for 

future cubesat form factor components to be added.  System components are 

firmly mounted to each of the discs and to the outside of the 10 cm cube.   

In the design, it was important to provide significant rigidity to the structure 

in order to reduce the effects of the flexing with varying attitude configurations.  In 

order to be able to control the COM along each of the primary coordinate axes, 

three masses, of significant mass, were selected and connected to linear motors.  

Electronics, capable of powering and controlling the mass position, were 

strategically mounted keeping the COM as close as possible to the COR of the 

acrylic hemisphere, in addition to various sensors required for closed loop 

control.  Figure 21 shows a general layout of the simulator and Appendix B lays 

out the main components and parts required to construct the system. 

 

Figure 21.   Cubesat Three-Axis Simulator (CubeTAS) 
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The test-bed maintains all required components in or above an acrylic 

hemisphere. Unique attachment hardware is mounted on a polycarbonate 

structure generated in a Stratasys Fortus Fused Deposition Modeling (FDM) 

400mc prototyping machine [41].  This hemisphere is placed atop the spherical 

air-bearing supported by the aluminum structure shown in Figure 22.  The air-

bearing is in the center of the black ring at about knee height in Figure 22.  

Further discussion will provide a more in depth description of the test-bed. 

 

Figure 22.   Aluminum Support Structure 

For attitude determination, data from a combination of two single-axis 

inclinometers, one three-axis Inertial Measurement Unit (IMU), and one sun 

sensor will be integrated in 2010 through the implementation of an Extended 

Kalman Filter (EKF). 
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A PC/104 is used to run the required data acquisition algorithms and route 

all associated control signals to components either directly or through a digital to 

analog PCB.  Position commands are sent to the linear motors based on 

feedback collocating the CG with the test-bed’s COR.  

Power is supplied by an on-board battery, which can be recharged as 

necessary, supplying the variety of voltages required by each of the components. 

B. COMPONENTS 

1. Structural 

a. Spherical Air Bearing 

A spherical air-bearing allows the test-bed to be supported by a thin 

film of pressurized air and lifted out of contact with supporting structures.  This 

eliminates friction aside from that associated with air contacting the surface of the 

hemisphere and drag as the airflow separates from the test-bed.  In addition to 

‘zero friction’ behavior, the air bearing eliminates wear and lubrication problems 

of standard bearings. 

The air bearing purchased (Figure 23) is compatible with a 5-inch 

outer diameter (OD) sphere.  The operating fly height is 0.0127mm (0.0005”) with 

a 68 kg (150 lbf) load at 80 psi [42]. The maximum supply pressure is 120 psi. 

 

Figure 23.   CubeTAS Spherical Air Bearing (After [42]) 
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New Way Air Bearings’ Porous Media Technology provides an 

evenly distributed airflow across the entire surface with “10s of millions of sub-

micron pores evenly spaced across the surface of the bearing [43].”  Figure 24 

shows five different air bearings and their associated pressure distribution 

patterns. 

 

Figure 24.   Pressure (psi) vs Lateral Position of various air bearings; From left 
to right: 1) Multiple orifices with no grooves, 2) Multiple orifices with 

distribution grooves, 3) Single orifice, no grooves, 4) Single non restrictive 
input port with depth and width of grooves providing restriction, 5) Full porous 
face with 10s of millions of sub-micron pores evenly spaced across the face 

(From [43]) 

b. Aluminum Support Structure 

A structure was designed in order to support the test-bed above the 

floor allowing pressurized air to be routed to the bottom of the spherical air-

bearing without varying the pre-existing magnetic field around the test-bed.  An 

aluminum 80/20 material was chosen for its modularity and ease of construction.  

TECO Pneumatics, Inc., was sent a preliminary sketch (Figure 25) and returned 

a CAD draft interpretation of the author’s intent (Figure 26).  
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Figure 25.   Aluminum Support Structure Preliminary Sketch 
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Figure 26.   TECO Pneumatics, Inc., Draft of the Aluminum Support Structure 
(From [44]) 

This design was the 5th iteration of the structure.  Other designs 

considered are shown below.  The first iteration attempted to use minimal 

material in the design with a ring around a sphere keeping it on the air bearing.  

A sphere was modeled through all design iterations until it was learned that 

limitations prohibited the use of a full sphere.  Limitations included an 

unavoidable disturbance in air flow associated with the joining point of two 

hemispheres and increased complexity associated with having only minimal 

components inside the sphere.  The advantage of using COTS parts is the ability 

to very quickly integrate them, as originally intended, in the test-bed.  If we 

attempted to include our linear motors, for example, inside the sphere and its 

associated COTS controller outside the sphere, we would need an A/D board to 

measure signals from the proprietary equipment and send them wirelessly to a 
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external desktop for processing.  This complexity was removed by accepting the 

addition of all parts associated with a component to the test-bed and the removal 

of the top hemisphere. 

 

Figure 27.   Structure: Version 1 

The second iteration included the integration of a two-camera 3D 

motion analysis system and a safety net.  The net was intended to eliminate 

visual obstructions in the cameras’ field of view (FOV). 

 

Figure 28.   Structure: Version 2 

The 3rd iteration was intended to raise the structure, allowing it to 

be independently supported, without the requirement of an external table.  This 

also allowed the structure to be manually leveled with vibration dampening 

padded feet.  The 3rd design was considered with the sphere at a standard table 

height or slightly higher allowing room for a net to catch the sphere in the case of 

instability causing it to fall from the air bearing.  The raising of the air bearing 

would have helped protect the sphere from scratches associated with contact of 

the structure during a fall.  
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Figure 29.   Structure: Version 3a 

 

Figure 30.   Structure: Version 3b 
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The 4th iteration eliminated the net and again placed the camera 

system above the sphere on a length of 80/20 that can be adjusted in the vertical 

and one lateral dimension.  This design was eliminated on account of the 

likelihood of vibrations affecting camera performance.  Instead, a “cage” type 

design was considered and ultimately chosen for production (Figure 26). 

 

Figure 31.   Structure: Version 4; Dimensions in inches 

The cross sectional type chosen was the 40-4040 Lite (Figure 32) 

which has moment of inertias, in x and y, of 9.39 cm4 [45].  The structure is made 

of 6105-T5 aluminum with cavities in each of the four corners giving it a reduced 

weight per meter of 1.78 kg/m.  The aluminum, a paramagnetic material, 

provides the strength and rigidity desired without the negative sensitivity to 

external magnetic fields as ferromagnetic metals.  Aluminum has the added 

benefit of decreased purchase cost and shipping expense. 
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Figure 32.   80/20 Inc. 40-4040 Lite (From [45]); Dimensions in mm 

c. Air Bearing Mount 

The method chosen to mount the spherical air bearing is two ¼” 

aluminum plates, each with a hole removed from the center.  The top plate has a 

larger hole in the center providing just enough room for the air bearing to be 

exposed while providing a restriction to motion in the vertical dimension with a 

shallow 1.24 mm lip (Figure 33).  The bottom plate provides access for the 

pressurized air port.  Both of the plates are attached at each corner and mounted 

to the structure via a roll-in T-nut. 

 

Figure 33.   Air-Bearing Mounting Plates; top view (left), side view (center), and 
bottom view (right) 

d. Bumper 

A protective bumper was added to prevent the simulator from falling 

from the structure as the result of a small-unexpected lateral impact.  The 

bumper is designed to increase the distance the CG would need to travel before 
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reaching a point in which the simulator would fall from the platform supporting the 

air bearing.  A net was initially conceived, but standard insulating foam for pipes 

was used as a simpler, cheaper option.  The bumper is supported by four screws 

attached to the spherical air-bearing mounting plates (Figure 34). 

 

Figure 34.   Test-bed Protective Bumper 

e. Hemisphere 

As mentioned above, a sphere containing test-bed components 

was intended initially in order to provide 360   of freedom around each coordinate 

axis.  A 2040-10V glass sphere was purchased from Teledyne Benthos Flotation 

(Figure 35) with the intention of removing the rubber seal from the “equator” and 

smoothing the transition between the two hemispheres.   

  

Figure 35.   Teledyne Benthos 2040-10V Glass Sphere (From [45]) 
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Unfortunately, when the sphere arrived it was not smooth and was 

manufactured with two elevated regions at each of the “poles”.  After a thorough 

search, it was determined that smoothing the 0.0508mm (0.002”) raised surfaces 

to the required RMS16 surface roughness would be inaccurate by hand and cost 

prohibitive using optics tooling. 

California Quality Plastics was able to manufacture an acrylic 

sphere of the proper specifications for an affordable price.  The first sphere 

ordered could be split into two halves with a lip along each half’s rim allowing 

them to join together.  The idea with this design was to utilize a separate disc or 

plate of some sort to mount our components on and rigidly attach this to the 

centerline or equator of the sphere.  This concept was again cost prohibitive and 

California Quality Plastics was asked to design a sphere with a disc mounted in 

the center.  This final design was accepted after one iteration, to the same 

company, for a version much smoother than the first.  The author has been 

unable to obtain the exact specifications on the sphere other than personal 

physical measurements.  In addition to this uncertainty, two spheres of the final 

specifications were ordered and the method of manufacturing prohibits the 

finished product from matching the requested design exactly. Consequently, 

physical measurements should suffice as adequate.  

The sphere, delivered as two halves, was separated and only the 

bottom portion used.  As a whole, the acrylic sphere is actually a prolate spheroid 

with the following dimensions: 
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Outer radius 127 mm (5 in) 

Thickness 6.35 mm (1/4 in) 

Major axis 127 mm (5 in) 

Minor axis 125.4 mm (4.94 in) 

Flattening, f  0.012 

Eccentricity, e  0.1576 

Table 5.   Spring Specifications 

where the flattening and eccentricity are defined as 

 

f 
a  b

a

e 
a2  b2

a

 (18) 

The main concern with using a prolate spheroid on a spherical air 

bearing is a variation in performance of the bearing based on the orientation of 

the sphere during operation.  Based on rudimentary tests the air bearings 

performance is not degraded below angles below approximately 60  .  This 

estimate is larger than that of other components that degrade the angular 

capability of the test-bed.  A way to measure the actual radius of the sphere at 

various angles was not determined.  Given the 1.27 mm (0.05 in) difference in 

radius between 0   and 90   pitch/roll, a disturbance in CG location will enter the 

system as the COR varies with pitch and roll variation.  The effect of this 

disturbance will be explored further in experimental validation tests. 

f. Polycarbonate Support 

The author generated a few polycarbonate parts in NPS’ 3D printer 

by first drafting scale models in CAD software.  The models were transferred to 

the 3D printer, which uses two different tips to lay either polycarbonate or a 
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support material as appropriate to generate the parts.  The polycarbonate is 

heated to around 300 C and laid layers with a thickness per layer of 0.254 mm 

[46].   

The primary advantage of this technique is speed.  Parts can be 

designed and generated within days, as opposed to weeks if you consider the 

time associated with shipping and machining similar aluminum parts.  Some of 

the parts fabricated would have been impossible to create by any other method. 

The primary disadvantage of this technique is quality control.  

Some of the smallest parts and attachment points on the test-bed require very 

accurate dimensions that were not within the capability of the 3D printer.  

Increased man-hours were expected, but a larger than expected amount of time 

was spent filing, drilling, and otherwise modifying printed components after 

production.  Unfortunately, at least one component fractured as a result of the 

“clean up” process and had to be repaired with quick drying adhesive.  Attaching 

hardware (about 8 nuts) had to be ground down due to inaccurate modeling of 

recess dimensions.  The polycarbonate proved to be of too great a hardness 

(ASTM D785: R115) to be removed at the angles associated with getting the 

required tools to the recessed areas [46].  The working surfaces were within the 

1U space reserved for future MEDs. 

2. Electrical 

a. Power 

The battery chosen to power the CubeTAS on the test-bed was the 

Inspired Energy N2054HD26, 14.4V, 2.6Ah, 4 cell, Smart Standard Li Ion Battery 

Pack.  Power is routed from the battery to a battery manager and DC/DC 

converter from which a number of voltages can be drawn.  

The battery controller and regulated DC kit used is the EK-05 from 

Ocean Server.  This system was integrated with the Inspired Energy N2054HD26 

instead of the Ocean Server BA95HC-FL in order to save weight and space 

allowing the battery to be mounted with the majority of its weight below the x-y 
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plane of the simulator.  Both batteries provide a 14.4 V DC source.  Initial testing 

of this integration was conducted by Major Melone at NPS, while conducting his 

thesis work.  His thesis was scheduled to be published at NPS in December 

2009. 

b. PC/104 

The PC/104 board chosen was the Advanced Digital Logic 

ADLLX8PC–AMD GeodeTM LX800.  This board has a 500 MHz processor and a 

can run on a processor load of 0.9W.  For cooling, a fanless heat sink was used 

to dissipate excess heat from the PCB.  The Linux based OS runs on an 

integrated 4GB SSD flash [47].  Table 6 shows the other features of the 

ADLLX8PC. 

 500MHz Processor 
 Power Management (ACPI 2.0 & APM 1.2) 
 SoDIMM200 up to 1GB DDR-400 
 Built In 2GB SSD Flash (optional) 
 Built In Geode LX800 @ 0.9W 
 CRT/LCD on-board 
 10/100 Base-T LAN-Ethernet 
 4x USB V2.0 Ports 
 EIDE Hard Disk Interface 
 COM1, COM2, LPT1 
 RTC and Watchdog Timer 
 AC97 Sound Interface (in & out) 
 PC/104-Plus BUS Connector 
 Single 5VDC Power Supply 

 

Table 6.   Features of the Advanced Digital Logic ADLLX8PC–AMD GeodeTM 
LX800 (After [47]) 

The PC/104 is responsible for receiving data from the sensors, via 

the analog to digital board in the case of the inclinometers, and using that data to 

compute desired balance mass locations and then sending commands to the 

squiggle motors via New Scale Technologies’ own motor controller. 
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c. Serial Board 

With an increased requirement for RS-232 connections, an Acces 

I/O Products, Inc., 104-COM-8SM Serial Communication Board was used to 

bridge the gap between our need for serial ports and the two COM ports provided 

by the PC/104.  This serial board provides eight serial ports. 

d. A/D Board 

As the inclinometers are analog devices and our controls 

implemented digitally on the PC/104, we used an Analog to Digital board to 

convert the signals being sent to the ADLLX8PC.   

The board chosen was the Diamond-MM-32-AT 16-Bit Analog I/O 

PC-104 Module with Autocalibration.  Some of the features of the board are listed 

in Table 7.   

Analog Input Channels 32 

Analog Output Channels 4 

Max Output Current 5mA 

Max Sampling Rate 200 kHz 

Digital I/O 24 bidirectional lines 

Table 7.   Diamond-MM-32-AT (After [48]) 

e. Relay Board for Magnetic Control 

Passive magnetic control is envisioned as a possible control 

method on the test-bed with an external Helmholtz coil.  In order to send the 

proper signals to the three coils on board, a relay board was mounted on the 

simulator.  Coils have been installed on CubeTAS as shown in Figure 36.  

Another NPS student, working on magnetic control schemes, prepared the coils 

with approximately 400 windings each.   
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Figure 36.   CubeTAS Magnetic Coils 

3. Sensors 

a. Inertial Measurement Unit 

In order to collect acceleration, gyroscopic, and magnetometer data 

in all three axes, the ADIS16405/PCBZ, Figure 37, three-axis inertial sensor was 

purchased from Analog Devices, Inc.  This Inertial Measurement Unit (IMU) uses 

a Serial Peripheral Interface (SPI) connection to the PC/104 and requires 5V of 

power supply.  The capabilities of the IMU are shown in Table 8. 
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Figure 37.   Analog Devices, Inc., ADIS16405/PCBZ (After [49]) 

 

Accelerometer 18g  

Gyroscope (selectable) 75 / sec,  150 / sec,   300 / sec  

Magnetometer 2.5 gauss  

Operating Temperature Range 40C to 105C  

Digitally Controlled Sample Rate up to 819.2 sps (or up to 1200 with external clock)

Table 8.   Analog Devices, Inc., ADIS16405/PCBZ Data (After [49]) 

The IMU is used on the NPS TINYSCOPE project for attitude 

determination.   
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b. Inclinometers 

In order to gather real time angular position data from the simulator, 

two Rieker N4 inclinometers, Figure 38, were placed to gather data about the x 

and y axes of the system.  With a transverse sensitivity of less than 1% at 30   

tilt, there is minimal error expected form these sensors. Table 9 shows the 

capabilities of the N4 inclinometers.  One of the advantages of these 

inclinometers is the aluminum mounting ring and the plastic housing, which 

reduce ferromagnetic effects on the test-bed. 

 

Figure 38.   Rieker, Inc., N4 Inclinometer (From [50]) 
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Measuring Range 70  

Resolution 0.01  

Max. Non-linearity  0.2% Full Range  

Response Time  0.3 sec  

Power Supply 5V  regulated  

Current Consumption Approx. 1mA at 5V  

Sensitivity Approx. 3.2mV /   

Temperature Drift of Sensitivity  0.025mV / C  

Table 9.   Rieker, Inc., N4 Inclinometer Data (After [50]) 

c. Sun Sensor 

In order to increase the accuracy of simulator angular orientation 

about the yaw axis, a SS-411 Two-Axis Digital sun sensor, Figure 39, from 

Sinclair Interplanetary is integrated into the test-bed with an external light source.  

The light source, not yet purchased, will provide parallel rays of incoming light for 

the sensor simulating rays of light, as they would arrive at the sensor from the 

sun on orbit.  The sensor is mounted on the simulator at 90   from the horizontal 

with two light sources external to the simulator allowing accurate data collection 

from 0  to 360   in yaw.  Other pertinent data is included in Table 10. 
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Figure 39.   SS-411 Two-Axis Digital Sun Sensor Mechanical Drawing (mm) 
(From [51]) 

Accuracy 0.1 over  70 Field-of-View  
Bandwidth 5 vector solutions per second 
Mass 34g 
Supply Voltage 4 to 50 V 
Supply Current 5.0 mA avg, 15.0 mA peak 
Operating 
Temperature 

25C to  70C  

 

Table 10.   SS-411 Two-Axis Digital Sun Sensor Data (After [51]) 

d. Camera System 

There are future plans to integrate an external camera system 

capable of accurately determining simulator attitude in three dimensions.  Spica 

Technologies, Inc., is capable of providing a system with two cameras with 8 or 

12.5 mm lenses depending on calibration requirements.  These cameras would 

be placed approximately 2–4 feet above the simulator in a configuration similar to 

that shown in Figure 40.  Markers would be placed on the simulator in order for 

each camera to locate each in three dimensions.  Although this system would  

 



 54

provide a spatial accuracy of the markers on the order of 0.03%, for the present 

this system is cost prohibitive [52].  Another version of the same system is being 

considered at almost half the cost. 

 

Figure 40.   Potential Camera System for Angular Determination (After [53]) 

4. Actuators: Linear Motors 

In order to precisely move the three balance masses of the system, 

each along its own direction vector parallel to each coordinate axis, three SQL-

3.4-10 linear motors, Figure 41, were purchased from New Scale Technologies, 

Inc.  These motors are capable of a resolution of .5 m  and operate with an 

integrated position encoder also provided by New Scale Technologies [54].  

Additional data related to the SQL-3.4-10 is shown in Table 11.  Linear encoders 

were also purchased from New Scale Technologies. 

 

Figure 41.   New Scale Technologies, SQL-3.4-10 (From [54]) 
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Range 20 mm 

Stall Force 200 g (2N) 

Speed 4mm/s 

Resolution 0.5m  

Input Power to controller (moving) 1.6 W (varies with load and speed) 

Operating Temperature 30C to  80C  

Weight 1.7 g 

Table 11.   SQL-3.4-10 Data (After [54]) 

During the design process, three motors were evaluated as 

potentials for the test-bed.  The most capable and also the most expensive 

option here was the LEGS motor by the Micromo Company.  The next best 

option was the SQL-3.4-10 Squiggle motor by New Scale Technologies.  A third 

option was considered from the Frigelli Company, the PQ-12.  

The LEGS motor met all the size and resolution requirements.  

However, with a high price tag and a complicated control scheme, this motor was 

deemed infeasible.   

The PQ-12 was very economical and compact, but did not provide 

the necessary resolution to remove all residual torques from the system.  The 

following derivation demonstrates the inappropriateness of the PQ-12. 

According to [55], it is appropriate to design a spacecraft simulator 

with residual torque,  r , one order of magnitude greater than the maximum 

planned on orbit disturbance torque,  d _ max , and two orders of magnitude less 

than the maximum attitude control torques of the spacecraft,  c _ max .  With this 

consideration, this derivation uses a  d _ max due to drag at 500 km altitude of 

4 106  N m  and an estimate for passive magnetic control for  c _ max of 

7.8 107  N m .   
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From the onset, it is impossible to meet the recommendations of 

[55].  The test-bed must be controllable, so the inequality pertaining to the control 

torques was considered first.  If residual torques are to be two orders of 

magnitude less than the maximum control torques, the required resolution 

capability of the linear motors must be on the order of 1.98 1010  N m .  The only 

motor that came close to this resolution is the LEGS motor, but it was too 

expensive.  It then became apparent that the project required an affordable motor 

with the smallest resolution possible. 

A preliminary estimate of the mass of the simulator is 8 kg.  If the 

COM is considered offset from the COR by some distance, d , then the following 

derivation can help as an aid in determining adequate motor resolution. 

 F  mg  (8kg)(9.81)  78.5N  (19) 

 d 
res

2
 (20) 

where d  represents the moment arm and  res  represents the resolution of the 

motor. 

  r  Fd  F
res

2
 (21) 

Therefore it is determined that if  r  7.8 107  N m , then res  1.98 1010 m . 

With these initial estimates, the residual moment arm after balance 

mass positioning must be on the order of 2 1010 m .  The PQ-12 has a resolution 

of 2.5 104 m  and thus does not meet the requirements of this test-bed [56].  At 

almost a third of the cost of the LEGS motors, the SQL-3.4-10, with a resolution 

of 0.5m , comes the closest to meeting these requirements and was 

consequently the motor of choice for the CubeTAS. 

The main drawback of the Squiggle motors was the requirement of 

a minimum preload of 10 grams (0.0981 N). This did not seem too stringent of a 

requirement at the onset, but when we started considering how to apply this 

preload in all test-bed configurations and not overload the motors at their 200 
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gram (1.96 N) maximum force capability, we quickly found more restrictions to 

the angular capability of the test-bed than we had originally foreseen.   

A spring was considered in order to apply the required pre-load.  

The following derivation was conducted in order to determine the spring 

specifications required for the maximum angular capability of the test-bed.  

Figure 42 shows a side view sketch of a single balance mass mounted on two 

aluminum rods, the pre-loading spring on one side and the Squiggle motor on the 

other. 

 

Figure 42.   Balance mass at maximum lateral position and elevation 

It can be shown that 

 Fx   (0.2)gsin  Fspring  0.01g  (22) 

where the mass of the balance mass is 0.2 kg, g is the gravitational constant, 

and   is the angle between the local horizontal and the balance mass mounting 

plate.  The third term represents the pre-load of 10 grams required by the motor 

to operate as designed.  Solving for Fspring  it can be determined that 

 
Fspring  (0.2)(9.81)sin  (0.01)(9.81)

Fspring  1.962sin  0.0981
 (23) 
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Figure 43.   Balance mass at minimum lateral position and elevation 

If the simulator rotates such that alpha becomes negative, Figure 

43, it can be shown that 

 Fx  Fspring  0.02k  (0.2)gsin  0.2g  (24) 

Substituting Fspring  from equation (15) into equation (16) it is 

determined that 

 k   
1.8639  3.924sin 

0.02
           N/m  (25) 

 lu   0.02574   
1.962sin  0.0981 

k
          m  (26) 

 

where lu  represents the uncompressed length of the spring, and k represents the 

spring constant. 

If an array of values for k  and l  are plotted for values of  , 

Figures 44–47, the maximum feasible angle of elevation,  , is approximately 

25  .   
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Figure 44.   Angle vs. Length 

 

Figure 45.   Angle vs. Length (0-30 ) 
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Figure 46.   Angle vs. Spring Constant 

 

Figure 47.   Angle vs. Spring Constant (0-30 ) 
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The design specifications of the spring that would make the test-

bed capable up to 25 degrees are:  

 

Spring constant, k 0.01277 N/mm 

Length uncompressed 11.5 cm 

Length fully compressed < 5.7 mm 

Minimum Outer Diameter 3 mm 

Maximum Outer Diameter 6 mm 

Table 12.   Spring Parameters for   25  

After consultation with a few spring manufacturers, it became 

apparent that the spring required to meet the parameters in Table 12 would be 

too flimsy for most manufacturer’s current tooling.  Reducing the angular 

capabilities of the test-bed was to desired so another solution to the preload 

requirement was examined. 

Instead of spring, a physical link between the balance masses and 

the squiggle motor was designed.  This design uses gravity to apply the preload 

to the motor above approximately 2.5   in pitch and roll.  Figure 48 shows the 

“arm” that is designed to be attached to one end of the balance mass and 

extends beyond the far end of the squiggle motor screw.  This part was designed 

using English units to accommodate NPS machine shop requirements.  The 

stainless steel balance masses are shown in Figure 49 with the attachment arms 

in the configuration required to apply the required preload. 
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Figure 48.   Arm that Attaches Balance Masses to Squiggle Motor (dimensions 
are inches) 

 

Figure 49.   Stainless Steel Balance Masses with Attachment Arms 

The main flaws in this design are friction between the motor shaft 

and the “arm” and motor position variability.  Friction is reduced by the 

introduction of a DupontTM Vespel® SP-21 in contact with either end of the 

Squiggle motor shaft.  When the elevation angle shifts from positive to negative, 

there will be a shift in position of the balance mass when the contact point 
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between the motor and shaft shifts from one thread to the next.  This will 

introduce an error on the order of 500 m .   

The error referred to above needs to be closely characterized and 

isolated so that it can be compensated for in the position control algorithm.  One 

preliminary method of accomplishing this task may be to first position the balance 

masses appropriately to reduce gravitational torques to acceptable levels 

followed by deactivation of the automatic mass-balancing system.  Second, it 

may be possible to command two of the Euler angles to constant values while 

commanding oscillations in the third and noting any deviation in encoder position 

from that which was commanded.  Deviations in encoder position readings are 

expected at specific combinations of angle and mass position. 
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IV. CONCLUSION 

A. SUMMARY OF WORK COMPLETED 

After a brief review of the Navy’s use of satellites and a survey of three-

axis simulators, an adaptive mass-balancing algorithm was developed.  The 

design and approximately 90% of the construction of a three-axis simulator, for 

algorithm validation, was completed.  This author’s work will be followed another 

NPS student for further research and completion of the CubeTAS. 

In order to develop the mass and inertia estimates in the CAD software 

NX6, the author made part models for over 100 parts.  A few of the 

manufacturing companies shared their pre-made models, and although these 

parts could not be edited, they were very useful in specifying exact dimensions 

during the design process.  Models were made for most of the nuts and screws in 

an attempt to make the model as legitimate as possible.   

Parts were received and the test-bed constructed with reference to the 

CAD model.  A 3D printing machine was used to manufacture many unique 

parts.  One Squiggle motor was tested on a simple block of wood before being 

mounted to the final simulator.  This test provided the author a place to examine 

the motor more closely and gain some hands on experience with the operation 

prior to integration on the CubeTAS. 

The method of applying the preload to the Squiggle motor sets a minimum 

angular limitation to CubeTAS of approximately 2.5  .  The maximum angular 

limit of the test-bed is still to be determined. 

B. CONTRIBUTIONS 

The main contribution of this thesis is the introduction of the first ever, to 

the best of the author’s knowledge, Cubesat three-axis simulator that uses only 

the balance masses to balance the system.  It may be possible for a CubeTAS to 
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be constructed at other universities to facilitate learning in other Aerospace 

departments giving students opportunities to test their own ADCS. 

C. LESSONS LEARNED 

Polycarbonate parts were first modeled in the NX6 environment and then 

exported for printing in the Stratasys 3D printer.  All of the parts generated 

needed to be worked by hand, via manual drilling, or precision cutting 

instruments only available in the campus machine shop.   

The logistics of ordering parts is a lengthy process.  If corrections were to 

be made quickly, parts needed to be salvaged from old projects.  If more 

accurate changes needed to be made, the timeline for construction of the 

CubeTAS moved the right with every delay. 

In the design process, components were organized by weight and size.  

Wiring connections were considered during the design process but not enough 

allowance was made for the unknown.  

 



 67

V. RECOMMENDATIONS FOR EXPERIMENTAL VALIDATION 

A. GENERAL METHODOLOGY 

In order to effectively validate the simulation from Chapter II, it is essential 

to recreate the same conditions of the simulation.  The SIMULINK model will be 

coupled with the sensors and actuators via S-functions that can be uploaded to 

the PC/104.  Once each component is functioning properly, the system as a 

whole can be tested by running the simulation in real time on the simulator.  The 

experimental results are compared to the results of the simulation so that the 

appropriate corrections can be made. 

B. SYSTEM IDENTIFICATION 

It is customary to conduct an experimental mass property identification of 

a spacecraft simulator.  This process can provide more accurate inertia and 

center of mass estimates than those found using only computer modeling [55].  

This data can be included in the real time mass-balancing algorithm.  This thesis 

concludes with the use of CAD software to estimate inertia and center of mass 

values for CubeTAS.  These CAD estimates were input into the simulation run in 

Chapter II. 

C. RECOMMENDATIONS FOR FURTHER WORK 

The first task that needs to be done in the continuation of this research is 

the generation of the S-functions required for each component to successfully 

communicate with the PC/104.  The PC/104 can then implement the mass-

balancing algorithm in real time on a Linux OS. 

Another possibility for follow on work may be identifying the mass 

properties of the simulator once each of the sensors is effectively sending data to 

the PC/104 and commands can be sent to each of the actuators with reliable 

performance.  This identification may include, but should not be limited to finding 

the simulators inertia matrix, J , and the CG location vector, r . 
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APPENDIX A: CUBESAT PARTICIPANTS LIST 

   
 US University Contact Email 
Alabama Auburn University Luther Richardson lrich@physics.auburn.edu 
 University of Alabama   
 Tuskegee University Vascar Harris  
Arizona Arizona State University Helen Reed Helen.Reed@asu.edu 
 University of Arizona Mike Drake drake@lpl.arizona.edu 
Boston Boston University Don Wroblewski dew11@bu.edu 
California Cal Poly State University Jordi Puig-Suari jpuigsua@calpoly.edu 
 San Jose Sate University  Dick Desautel  dick.desautel@sjsu.edu 
 Stanford University Bob Twiggs bob.twiggs@stanford.edu 
 University of California Irvine Divya Patel  
 University of California Santa Barbara Marko Peljhan  
Colorado University of Colorado - Boulder Chris Koehler Koehler@colorado.edu 
Florida Florida Institute of Technology Michael Letsky  
 Embry-Riddle Aeronautical University Ary Glantz aryjglantz@hotmail.com 
Hawaii University of Hawaii Wayne Shiroma cubesat@spectra.eng.hawaii.edu 
Illinois University of Chicago Geza Gyuk ggyuk@adlerplanetarium.org 
 University of Illinois Gary Swenson swenson1@uiuc.edu 
Indiana Purdue University David Filmer filmer@ecn.purdue.edu 
 Taylor University Hank Voss hnvoss@tayloru.edu 
 SUNY Geneseo Josh Reiner wersing@physics.auburn.edu 
Iowa Iowa State University Thomas Calgaard tmichael@iastate.edu 
Kansas University of Kansas Trevor Sorensen tsorensen@ku.edu 
Lousiana University of Louisiana Robert Henry henry@louisiana.edu 
Maryland US Naval Academy Bob Bruninga bruninga@usna.edu 
Massachusetts Dartmouth College Shaina Damm  
Michigan Michigan Technological University Brad King lbking@mtu.edu 
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Missouri Wasington University - St. Louis Mike Swartwout mas@mecf.wustl.edu 
Montana Montana State University David Klumpar merope@ssel.montana.edu 
New York Cornell University Mark Campbell mc288@cornell.edu 
 Polytechnic University – NYC Ximing Li  
New Mexico New Mexico State University Stephen Horan shoran@nmsu.edu 
North Carolina North Carolina State University Tommy Sebastian tsebast@ncsu.edu 
North Dakota University of North Dakota William Semke william_semke@mail.und.nodak.edu 
Oklahoma University of Oklahoma Brandon DeKock  
Texas University of Texas - Austin Cesar Ocampo cesar.ocampo@mail.utexas.edu 
 Texas Christian University Andre Mazzoleni A.Mazzoleni@tcu.edu 
 Texas A&M Diane Hurtado d-hurtado@tamu.edu 
Utah Utah State University Chad Fish  
Virginia George Mason University Eliud Bonilla ebonilla@gmu.edu 
Washington University of Washington Adam Bruckner Bruckner@aa.washington.edu 
Washington D.C. George Washington University Jer-Nan Juang J.JUANG@LaRC.NASA.GOV 
    
    
   
 International University Contact Email 
Argentina Universidad de Buenos Aires Gustavo Fano  
Australia University of Sydney Salah Sukkarieh salah@acfr.usyd.edu.au 
Brazil UNOPAR University Fernando Stancato  
Canada Carleton University Michel Barbeau barbeau@scs.carleton.ca 
 University of Sherbrooke Jean deLafontaine Jean.deLafontaine@USherbrooke.ca 
 University of Toronto Robert Zee rzee@utias-sfl.net 
China Tsinghua University Li Luming  lilm@tsinghua.edu.cn  
Colombia La Universidad Sergio Arboleda, Bogota Colombia Cesar Ocampo cesar.ocampo@mail.utexas.edu 
Denmark Aalborg University, Denmark Rafal Wisniewski raf@control.auc.dk 
 Technical University of Denmark Peter Meincke pme@oersted.dtu.dk 
Germany Fachhochschule Aachen Artur Scholz cubesat@fh-aachen.de 
 Julius-Maximilians-Universitaet Wuerzburg Klaus Schilling schi@informatik.uni-wuerzburg.de 
 Technical University of Berlin Dr. Hakan Kayal Hakan.Kayal@TU-Berlin.de 
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 University of Applied Sciences - Weingarten Klaus Shilling schi@ars.fh-weingarten.de 
 University of Siegen, Germany Dr. Hubert Roth roth@rst.e-technik.uni-siegen.de 
India New Delphi Deepak daksh@vsnl.net 
Turkey Istanbul Technical University Dr. A. Rüstem Aslan aslanr@itu.edu.tr  
Italy University of Trieste, Italy Anna Gregorio gregorio@sci.area.trieste.it 
 Universita di Roma, Italy Fabio Santoni fabio.santoni@uniroma1.it 
Japan Tokyo Institute of Technology, Japan Saburo Matunaga Matunaga.Saburo@mes.titech.ac.jp 
 University of Tokyo, Japan Shinichi Nakasuka nakasuka@space.t.u-tokyo.ac.jp 
 Nihon University,Japan Y. Miyazaki miyazaki@forth.aero.cst.nihon-u.ac.jp 
 Soka University, Japan Seiji Kuroki kuroki@ieee.org 
Malaysia University of Malaysia Faizal Allaudin taiko2k@hotmail.com 
Netherlands Delft University of Technology  Robbert J. Hamann R.J.Hamann@LR.TUDelft.NL 
Norway Norwegian University of Science Technology Egil Eide eide@tele.ntnu.no 
Poland Warshaw University of Technology Andrzej Kotarski andrzej.kotarski@gmail.com 
Portugal Faculdade de Engenharia da Universidade do Porto Pedro Portela portela@fe.up.pt 
 University of Porto Tiago Oliveira  em00165@fe.up.pt 
Romania University of Bucharest Mugurel Balan mugurel.balan@gmail.com  
Saudi Arabia Beirut Arab University Rabie Kalash rkalash@hotmail.com 
South Africa University of Stellenbosch Arno Barnard abarnard@sun.ac.za 
South Korea Hankuk Aviation University Young-Keun Chang ykchang@mail.hangkong.ac.kr 
Spain La Salle University, Barcelona Javier Lazaro jarribas@salleurl.edu 
Switzerland Federal Technical University of Lausanne  Muriel Noca muriel.noca@epfl.ch 
 University of Applied Sciences of Southern Switzerland Paolo Ceppi paolo.ceppi@supsi.ch 
Taiwan National Cheng Kung University Taiwan J.J. jjmiau@mail.ncku.edu.tw 
Turkey Turkish Air Force Academy Fuat Ince fuat.ince@superonline.com 
 Bahcesehir University Cengiz Toklu yct001@gmail.com 
Ukraine Institute of Technical Mechanics- Ukraine, Dnepropetrovsk  Anatoly Alpatov alpatov@ukr.net  
United Kingdom Imperial College Dr. Tim Horbury t.horbury@imperial.ac.uk 
    
 
 CubeSat Collabortation Contact Email 
United States FunSat - Florida University Collaboration Kyle Schroedner funsat@mail.ucf.edu 
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Europe European CubeSat Collaboration Klaus Schilling schi@informatik.uni-wuerzburg.de 
United States Inland Northwest Space Alliance Mike Miller mmiller@inwspace.org 
Canada Win-Cube: MSIG/MAHRCC/Mindset Stefan Wagener VE4NSA@amsat.org  
    
    
 
 High School Contact Email 
 Leland High School Steve Schlink steveschlink@aol.com 
 Saratoga High School Roxana Safipour rsafipour@yahoo.com 
 Wilcox High School Lisa Kinneman kinneman@pacbell.net 
Alabama Auburn University Luther Richardson lrich@physics.auburn.edu 
    
    
 
 Amateur Radio Contact Email 
 South Bay Amateur Radio Al Rendon  
 StenSat Ivan Galysh galysh@juno.nrl.navy.mil 
    
    
 
 Corporations Contact Email 
Czech Republic EMP Centauri Ltd. Marian Vana info@emp-centauri.cz 
Spain GADESA, Galicia Manuel Oreiro manuel.oreiro@ingenierosvigo.com 
United States QuakeFinder Tom Bleier tbleier@stellersolutions.com 
United States Tethers Unlimited  Nestor Voronka  voronka@tethers.com  
United States Globaltec R & D  Center Judy Dragich Coenen globaltec@dmv.com 
United States Global Imaging Michael Guberek mguberek@globalimaging.com 
United States Kentucky Science and Technology Corporation  Kris Kimel kkimel@kstc.com 
    
 Contact Email 
 Part Suppliers     
 Pumpkin, Inc. Andrew E. Kalman Cubesat Kit 
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 Tethers Unlimited  Nestor Voronka  Subsystems & Modules for CubeSats 
 Clyde-Space Craig Clark Power System & Batteries 
 Samtec  Connectors 
 Digi-Key  General Electronics 
 McMaster-Carr  General Hardware 

 
Maxim  

General Electronics 
 

   [After 57] 
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APPENDIX B: PARTS 

 Description Manufacturer Identifier 

1 Support Structure TECO Pneumatics Drawing #: 8020-5076 

2 Roll-in T-nuts TECO Pneumatics 13032 

3 Air Bearing New Way Air Bearings POC: Rich Hesse 

4 Air Bearing Mount Custom ¼” Al plates 

5 Air Supply Valves/Hoses American Air Works POC: Ray Lambert 

6 Polycarbonate Parts Stratasys NA 

7 Linear Motors New Scale Technologies SQL-3.4-10 

8 Linear Motor Controllers New Scale Technologies MC-1100 

9 Linear Encoders New Scale Technologies Tracker 

10 Battery Inspired Energy ND2054 

11 Battery Manager Ocean Server BB-04S 

12 DC/DC Converter Ocean Server DC123SR 

13 PC/104 Advanced Digital Logic ADLLX8PC – AMD 

GeodeTM LX800 

14 Wireless Antenna D-Link DWL-G730AP 

15 Acrylic Hemisphere California Quality Plastics Custom Sphere with 

inner deck 

16 Balance Masses Custom Stainless Steel 

17 IMU Analog Device, Inc. ADIS16405/PCBZ 

18 Inclinometers Rieker N4 
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